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Abstract. Polynomial and rational functions are the number one choice
when it comes to modeling of radial distortion of lenses. However, several
extrapolation and numerical issues may arise while using these functions
that have not been covered by the literature much so far. In this pa-
per, we identify these problems and show how to deal with them by
enforcing nonnegativity of certain polynomials. Further, we show how to
model these nonnegativities using polynomial matrix inequalities (PMI)
and how to estimate the radial distortion parameters subject to PMI
constraints using semidefinite programming (SDP). Finally, we suggest
several approaches on how to incorporate the proposed method into the
overall camera calibration procedure.

1 Introduction

Radial distortion modeling is the most important non-linear part of the camera
calibration process [9]. The first works on the topic came from the photogram-
metric community [4, 5, 14]. Since then, a plethora of models has been suggested
in the literature [16]. Among the proposed models, the ones based on polynomial
and rational functions are the most popular. This popularity undoubtedly stems
from the fact that these function are easily manipulated and yet provide suffi-
cient fitting power for wide range or distortions. Unfortunately, the extrapolation
qualities of polynomials can be quite unpredictable in situations where little or
no data is available. However, even if data points are missing, the overall shape
of the distortion is known a priori in many calibration scenarios, e.g., the lens
introduces barrel or pincushion distortions. Based on such a priori information,
the shape of the polynomial and rational distortion functions can be controlled
by enforcing nonnegativity of certain polynomials. For example, in the case of
pincushion distortion we can accomplish the desired shape by enforcing nonneg-
ativity of the first and the second derivatives of the distortion function on the
whole field of view of the camera.

In this paper, we propose a radial distortion calibration procedure where a
polynomial cost function, e.g., reprojection error, is minimized subject to such
shape constraints. This shape optimization procedure is designed to stabilize the
shape of the distortion function. It is based on polynomial matrix inequalities
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(PMI) programming and can be easily incorporated into an existing camera
calibration procedure.

In Section 2, we formally introduce the radial distortion function and present
several extrapolation issues arising while using polynomial and rational distor-
tion models. Next, in Section 3 we provide a minimal theoretical background
needed for our shape stabilization approach. In Section 4, we demonstrate the
proposed method on three types of radial distortion shapes and models and
show how to incorporate the method into an overall camera calibration proce-
dure. Finally, in Section 5 we experimentally validate our approach and show
that the method guarantees the correct shape of a distortion function without
compromising the quality of the overall camera calibration as measured by the
reprojection error.

2 Camera Radial Distortion

Let us suppose that a set of scene points Xi ∈ R3, i = 1, . . . , n is observed by a
camera. If R ∈ SO(3), t ∈ R3 are the camera extrinsic parameters, a scene point
Xi gets projected into an image point (xi, yi, 1)>:

λi(xi, yi, 1)> = RXi + t, λi ∈ R.

In reality, some amount of radial distortion is always present and the camera
observes a point (x̂i, ŷi, 1)> which does not coincide with the ideal (and unob-
servable) point (xi, yi, 1)>. In pixel coordinates, the camera observes a point
K(x̂i, ŷi, 1)>, where K ∈ R3×3 is the matrix of intrinsic camera parameters, the
so-called calibration matrix. Radial distortion function L : R → R is a function
of radius r =

√
x2
i + y2

i that models the radial displacement of the ideal image
point position from the center of the radial distortion as(

x̂i
ŷi

)
= L(r)

(
xi
yi

)
. (1)

The function L(r) is only defined for r > 0 and L(0) = 1, L(r) > 0. For the
purposes of demonstration of the proposed shape optimization procedure, we
will use L(r) defined as follows

L(r) =
f(r)

g(r)
=

1 + k1r + k2r
2 + k3r

3

1 + k4r + k5k2 + k6r3
, (2)

where k = (k1, k2, . . . , k6) is the vector of model parameters. This definition
accommodates several models already proposed in the literature [12]. However,
we will see that the shape optimization procedure holds for any rational function.

2.1 Extrapolation issues of radial distortion calibration

Let us motivate the need for the radial distortion shape optimization by demon-
strating two examples of extrapolation issues arising while using polynomial and
rational distortion models.
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Fig. 1: Calibration issues. Examples of issues arising while using polynomial and
rational function for radial distortion calibration. See text for details.

First, let’s suppose a calibration scenario where images of a calibration target
were taken, but the image projections of the known 3D points lie close to the
center of the images with no points covering the corners of the images. Figure 1(a)
shows in black the graph of the amount of barrel distortion introduced by the
camera lens as a function of the distance from the center of the radial distortion.
When a polynomial distortion model L(r) = f(r) is used, see Equation 2, in
combination with an unconstrained calibration method [21, 2] (in red), the real
distortion is fitted successfully near the center of the image on intervals where the
data points are available (left of the diamond symbol). However, the recovered
polynomial quickly drifts away elsewhere (red circles depict the distances of
the projections of the image corners). In green, a polynomial recovered by the
method proposed in this paper is shown. Here, the negativity of the first and
the second derivatives of the polynomial on the whole field of view was enforced.
This caused the model to fit the original distortion much closer on the whole
field of view. Figure 1(b) shows a synthetic checkerboard image (the upper left
corner) and the same image distorted by the original barrel distortion (the upper
right corner). In the lower left corner, the image is undistorted back using the
polynomial recovered by [21, 2]. In the lower right corner, the image successfully
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undistorted by the polynomial recovered using the proposed shape optimization
method is shown.

Let us consider a similar calibration scenario to the one from the previous
paragraph, this time with a lens causing a mustache type radial distortion, see

Figure 1(c). If the radial distortion model is used, L(r) = f(r)
g(r) , the classical

calibration approach [21, 2] is able to correctly recover the original shape. How-
ever, the polynomials f(r) and g(r) share a common root (red dash-dot lines),
which causes a numerical instability presented as a sharp spike in L(r) around
the common root—an issue we will call the zero-crossing problem. When the
nonnegativity of g(r) is enforced using the proposed approach, not only is the
correct shape recovered, but since there is now no root in the field of view in-
terval (green dash-dot lines), the spike in L(r) is also gone. Figure 1(d) shows
a similar arrangement as Figure 1(b), now with only the upper left part of the
checkerboard shown. The numerical instability of L(r) is presented as a notable
ringing in the upper left corner of the checkerboard. One can argue that the com-
mon root is a consequence of the fact that the degrees of f(r), g(r) are higher
that needed and that a model with fewer coefficients should be used. This may
be true in some cases, however, we observed just as many situations where the
lower degree polynomials resolved the zero-crossing problem only at the cost of
a considerably higher reprojection error.

3 Polynomials and PMI Programming

In this section, we present a minimal theoretical background needed for the
proposed shape optimization procedure.

3.1 Polynomials and polynomial matrices

An univariate polynomial p(x) ∈ Rn[x] of degree n ∈ N is a real function defined
as

p(x) = pnx
n + pn−1x

n−1 + · · ·+ p1x+ p0 = p>ψn(x),

where p = (p0, p1, . . . , pn)> ∈ Rn+1 is the vector of coefficients with a nonvan-
ishing coefficient pn and ψn(x) = (1, x, x2, . . . , xn)> is the canonical basis. Let
q(x) ∈ R2n[x]. A symmetric matrix Q ∈ Rn′×n′

, Q = (qi,j), where n′ = n + 1, is
called Gram matrix associated with q(x) and the basis ψn(x) [6] if

q(x) = ψ>n (x) Qψn(x). (3)

Generally, there is more than one Gram matrix associated with a polynomial
q(x) and we will denote the set of such matrices as G(q(x)).The polynomial q(x)
can be expressed in the elements of Q by simply expanding the right hand side
of Equation 3 and by comparing the coefficients.

Let x = (x1, x2, . . . , xd) ∈ Rd be a real vector and α = (α1, α1, . . . , αd) ∈ Nd
an integer vector. A monomial of degree n =

∑
αi is defined as xα =

∏n
i=1 x

αi
i .



Stable Radial Distortion Calibration by PMI Programming 5

A multivariate polynomial p(x) ∈ Rn[x] of degree n ∈ N is a mapping from Rd
to R defined as a linear combination of monomials up to degree n,

p(x) =
∑
|α|≤n

pαxα =
∑
|α|≤n

pαx
α1
1 xα2

2 · · ·x
αd

d = (pα)>|α|≤n(xα)|α|≤d = p>ψn(x),

where p ∈ Rm is the vector of coefficients and ψn(x) is the canonical basis ofm =(
d+n
d

)
monomials up to degree n. By a polynomial matrix we will understand

a symmetric matrix whose elements are polynomials. In the next, Sn(R[x]) will
denote the set of n × n symmetric polynomial matrices. The degree of P =
(pi,j(x)) ∈ Sn(R[x]) is the largest degree of all the polynomial elements of P,
deg P = maxi,j deg pi,j(x).

Besides parameterizing polynomials by the associated Gram matrices, we will
also need to “linearize” them, i.e., to substitute every monomial xα by a new
variable yα ∈ R. To do this, we define the Riesz functional `y : Rn[x]→ R[y], a
linear functional that for a d-variate polynomial of degree n, p(x) =

∑
α pαxα,

returns anm-variate polynomial of degree one, `y(p(x)) =
∑

α pαyα,m =
(
d+n
d

)
.

With a slight abuse of notation, we will also use `y as a matrix operator acting
on Sn(R[x]): if P ∈ Sn(R[x]), then P′ = `y(P) if and only if p′i,j(y) = `y(pi,j(x)).

3.2 Polynomials positive on finite intervals

The shape optimization procedure presented in this paper is based on enforcing
nonnegativity of certain polynomials. Since most of the real cameras have limited
fields of view, we only need to control the behavior of L(r) for values r ∈ [0, r̄],
where r̄ is the maximal distance between the center of the radial distortion
and an (undistorted) image point. For this, we need to characterize the set of
univariate polynomials nonnegative on finite intervals. In [13], based on Markov-
Lukacs theorem, Nesterov showed how to characterize such a set using positive
semidefinite Gram matrices:

Theorem 1. Let α < β, p(x) ∈ R[x] and deg p(x) = 2n. Then p(x) ≥ 0 for all
x ∈ [α, β] if and only if

p(x) = s(x) + (x− α)(β − x)t(x),

where s(x) = ψ>n (x) Sψn(x), t(x) = ψ>n−1(x) Tψn−1(x), such that S, T � 0 (i.e.,
S ∈ G(s(x)), T ∈ G(t(x)) are positive semidefinite Gram matrices of polynomials
s(x) and t(x), respectively).

If deg p(x) = 2n+ 1, then p(x) ≥ 0 for all x ∈ [α, β] if and only if

p(x) = (x− α)s(x) + (β − x)t(x),

where s(x) = ψ>n (x) Sψn(x), t(x) = ψ>n (x) Tψn(x), such that S, T � 0.

Even though Theorem 1 is an equivalence, we will only use it as an implication:
as long as we will have matrices S, T that are positive semidefinitive, Theorem 1
guarantees that a polynomial p(x) constructed using these matrices will be non-
negative on a given interval.



6 Jan Heller, Didier Henrion, Tomáš Pajdla

3.3 Polynomial Matrix Inequalities

According to Theorem 1, a polynomial is nonnegative on an interval as long the
matrices S, T are positive semidefinite. By combining these constraints with a
polynomial cost function, we get a problem of polynomial matrix inequalities
(PMI) programming. A PMI program can be formally defined as follows:

Problem 1 (Polynomial matrix inequalities program)

minimize p(x)

subject to Gi(x) � 0, i = 1, . . . ,m,

where p(x) ∈ R[x], Gi ∈ Sni(R[x]).

In general, Problem 1 is a hard non-convex problem. Note however, that if the
cost function p(x) and the matrices Gi(x), i = 1, . . . ,m have degree one, then
Problem 1 reduces to a linear matrix inequality (LMI) program and as such
is a semidefinite program (SDP) solvable by any available SDP solver. In fact,
most of the time the shape optimization problems in this paper lead to such a
program.

Sometimes still, Gi(x) will not be linear. In such cases, we will use the re-
laxation approach suggested by Henrion and Lasserre [10]. In [10], the authors
proposed a hierarchy of LMI programs P1,P2, . . . that produces a monotonically
non-decreasing sequence of lower bounds p(x∗1) ≤ p(x∗2) ≤ . . . on Problem 1 that
converges to the global minimum p(x∗). Practically, the series converges to p(x∗)
in finitely many steps, i.e., there exists j ∈ N, such that p(x∗j ) = p(x∗). The au-
thors also showed how this situation can be detected and how the value of x∗ can
be extracted from the solution of the relaxation by the tools of linear algebra.

Let us show here how to construct Pδ, i.e., the LMI relaxation of Problem 1 of
order δ; see [10] for the technical justification of this procedure. Let G ∈ Sn(R[x]),
n =

∑m
i=1 ni denote a block diagonal matrix with matrices Gi on it’s diagonal.

Since (∀i : Gi(x) � 0)⇔ G(x) � 0, we can replace the PMI constraints Gi(x) � 0
with one PMI constraint G(x) � 0. Next, we construct the so-called moment
matrix Mδ(y) and localizing matrix Mδ(G,y) of G, defined as

Mδ(y) = `y(ψδ(x)ψ>δ (x)),

Mδ(G,y) = `y((ψδ(x)ψ>δ (x))⊗ G),

where ⊗ denotes the Kronecker product [10]. Let γ = 1 if deg G ≤ 2, γ = ddeg Ge
2

otherwise. Now, we can formally write the relaxation Pδ as

Problem 2 (LMI relaxation Pδ of order δ)

minimize `y(p(x))

subject to Mδ−γ(G,y) � 0,

Mδ(y) � 0.

As the Riesz functional `y was used to “linearize” both the cost function and
the constraints, we can easily see that Problem 2 is an LMI program.
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4 Shape optimization for radial distortion calibration

In this section, we show how to combine the results presented in Section 3 into
the radial distortion shape optimization procedure. Technically, the procedure
consists of minimization of a polynomial cost function in the vector of radial
distortion parameters k subject to PMI constraints enforcing nonnegativity of
certain polynomials in the radius r. Such a minimization problem is a PMI
program that can be dealt with using the approach from Section 3.3.

As mentioned in Section 3.2, we only need to control the shape of L(r) on
the interval [0, r̄]. Note, that r̄ is the maximal distance between the center of
the radial distortion and undistorted image points, i.e., the value of r̄ is not
known prior to the actual calibration. The value of r̄ is therefore a user supplied
parameter. Fortunately, the proposed method is not very sensitive to the value
of this parameter and even a gross overestimate yields minima identical to the
ground truth value.

4.1 Unconstrained radial distortion calibration

There are several ways how to determine the vector of parameters k of the
distortion function L(r) [9, 17]. All we need for our shape optimization approach
is a polynomial cost function. Here, we will define and use one of such possible
cost functions. Let us rewrite Equation 1 using L(r) from Equation 2 as

g(r)

(
x̂i
ŷi

)
− f(r)

(
xi
yi

)
=

(
g(r) x̂i − f(r)xi

g(r) ŷi − f(r) yi

)
= 0.

By factoring out the vector of parameters k and by denoting

Ai =

(
−r xi −r2 xi −r3 xi x̂i r x̂i r

2 x̂i r
3

−r yi −r2 yi −r3 yi ŷi r ŷi r
2 ŷi r

3

)
, bi =

(
xi − x̂i
yi − ŷi

)
,

we get a linear system Aik = bi. Now, we can stack A = (A>1 , A
>
2 , . . . , A

>
n )>,

b = (b>1 ,b
>
2 , . . .b

>
n )> and estimate the radial distortion parameters k =

(k1, k2, . . . , k6) as a solution to an overdetermined system Ak = b in the least

square sense, i.e., by minimizing ‖Ak− b‖2. Note that for polynomial model,
i.e., g(x) = 1, this corresponds to the minimization of the reprojection error.

Let us now express the minimization of ‖Ak− b‖2 as an LMI program. By
expanding

‖Aik− bi‖2 = (Aik− bi)
>(Aik− bi) = k>A>i Aik− 2b>i Aik + b>i bi

and by denoting M =
∑n
i=1 A

>
i Ai, m = −2

∑n
i=1 A

>
i bi, c =

∑n
i=1 b>i bi, we can

write the polynomial form of the cost function as

‖Ak− b‖2 = k>Mk + m>k + c. (4)
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As expected, Equation 4 is a quadratic polynomial in k and by construction
M � 0, i.e., M is a positive semidefinite matrix. Even though the cost function is
quadratic, it can be converted into a linear function using the Schur complement
trick [3]:

F =

(
I Lk

k>L> −m>k− c+ γ

)
� 0 ⇔ k>L>Lk + m>k + c− γ ≤ 0.

By decomposing M as M = L>L, e.g., using the Cholesky or the spectral decom-
position [7] (recall that M � 0), we can rewrite the minimization of Equation 4
as the following LMI program:

Problem 3 (Unconstrained radial distortion calibration)

minimize γ

subject to F =

(
I Lk

k>L> −m>k− c+ γ

)
� 0.

4.2 Barrel distortion and the polynomial model

As we can see from the example of barrel radial distortion in Figure 1(a), this
type of distortion can be characterized by the negativity of the first and the
second derivatives:

∀r ∈ [0, r̄] : L′(r) ≤ 0 &L′′(r) ≤ 0, (5)

where [0, r̄] spans the field of view of the camera. If we consider the polyno-
mial model L(r) = f(r), the constraints above mean that we need to enforce
nonnegativity of polynomials

−f ′(r) = −k1 − 2k2 r − 3k3 r
2,−f ′′(r) = −2k2 − 6k3 r

on the interval [0, r̄]. According to Theorem 1, −f ′(r) ≥ 0 for ∀r ∈ [0, r̄] iff

−f ′(r) = −k1 − 2k2 r − 3k3 r
2 = ψ1(r)>S1ψ1(r) + r (r̄ − r) T1, (6)

where

S1 =

(
s11 s12

s12 s13

)
� 0, T1 = (t11) � 0.

By expanding the right hand side of Equation 6 and by comparing the polynomial
coefficients, we get a parameterization of k in the elements of S1 and T1:

−k1 = s11

−2k2 = 2s12 + r̄ t11

−3k3 = s13 − t11

 ⇒ k = (−s11,−s12− 1
2 r̄t11,

1
3 (t11−s13), 0, 0, 0). (7)
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Let’s apply Theorem 1 to −f ′′(r) to get the following constraint:

−f ′′(r) = −2k2 − 6k3 r = r S2 + (r̄ − r)T2, S2 = (s21) � 0, T2 = (t21) � 0. (8)

By combining Equations 8 and 7, we can express the entries of S2 and T2 in the
entries of S1, T1:

−2k2 = r̄ t21

−6k3 = s21 − t21

 ⇒
 s21 = 1

r̄ (2s12 + 2r̄ s13 − r̄t11)

t21 = 2
r̄ (s12 + 1

2 r̄t11)
(9)

Now, we have four PMI constraints on the shape of L(r). If we combine
these constraints along with the parameterization of k from Equation 7 with
Problem 3, we get a radial distortion calibration problem that enforces a barrel
type distortion shape of the resulting distortion model:

Problem 4 (Barrel distortion calibration)

minimize γ

subject to F � 0, S1 � 0, T1 = (t11) � 0,

S2 =
(

1
r̄ (2s12 + 2r̄ s13 − r̄t11)

)
� 0,

T2 =
(

2
r̄ (s12 + 1

2 r̄t11)
)
� 0.

Problem 4 is a PMI program in 5 variables γ, s11, s12, s13, t11. Since both the
cost function and the PMI constraints have degree one, Problem 4 is in fact an
SDP problem. Once it is solved, the unknown distortion parameters k can be
easily recovered using Equation 7.

4.3 Pincushion distortion and the division model

Let us make an analogous analysis for the pincushion distortion shape and the
division model L(r) = 1

g(r) . This type of distortion is characterized by the non-

negativity of the first and the second derivatives of L(r) on the field of view of
the camera [0, r̄]. From the first derivative we get the following constraint on the
polynomial denominator g(r):

L′(r) =
−g′(r)
g2(r)

⇒ L′(r) ≥ 0⇔ −g′(r) ≥ 0.

The second derivative yields a bit more complicated constraint:

L′′(r) =
g(r)h(r)

g4(r)
=

h(r)

g3(r)
⇒ L′′(r) ≥ 0⇔

{
(g(r) ≥ 0 &h(r) ≥ 0) ∨

(g(r) ≤ 0 &h(r) ≤ 0),

where h(r) = 2(g′(r))2 − g(r)g′′(r). However, since we know that L(r) > 0 by
definition, we only need to consider the constraints g(r) ≥ 0, h(r) ≥ 0. Let
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us start with the constraint g(r) ≥ 0. According to Theorem 1, g(r) ≥ 0 for
∀r ∈ [0, r̄] iff

g(r) = 1 + k4r + k5r
2 + k6r

3 = ψ1(r)>S1ψ1(r) + (r̄ − r)ψ1(r)>T1ψ1(r), (10)

where

S1 =

(
s11 s12

s12 s13

)
� 0, T1 =

(
t11 t12

t12 t13

)
� 0.

This leads to the following parameterization of k as well as to a constraint on
the variable t11:

1 = r̄ t11

k4 = s11 − t11 + 2r̄t12

k5 = 2s12 − 2t12 + r̄t13

k6 = s13 − t13

 ⇒


k = (0, 0, 0, s11 − t11 + 2r̄t12,

2s12 − 2t12 + r̄t13, s13 − t13)

t11 = 1
r̄

(11)
By applying Theorem 1 to the constraint −g′(r) ≥ 0, we get

−g′(r) = −k4 − 2k5 r − 3k6 r
2 = ψ1(r)>S2ψ1(r) + r (r̄ − r) T2, (12)

where

S2 =

(
s21 s22

s22 s23

)
� 0, T2 = (t21) � 0.

As in the case of the barrel distortion optimization, we can express the entries
of S2 and T2 in the entries of S1, T1. This time, however, we have more variables
than equations and we have to set one of the entries free—we chose s22:

−3k4 = s21

−2k5 = 2s22 + r̄t21

−3k6 = s23 − t21

 ⇒


s21 = t11 − s11 − 2r̄t12

s23 = − 1
r̄ (s12 + 2s22 − 4t12 + r̄(3s13 − t13))

t21 = − 1
r̄ (2s12 + s22 − 2t12 + r̄t13)

(13)
The final constraint is the most complicated because of the quadratic monomials
in k: h(r) > 0 for ∀r ∈ [0, r̄] iff

h(r) = (6k6r
2 + 4k5r + 2k4)(3k6r

2 + 2k5 + k4)−
−(2k5 + 6k6r)(k6r

3 − k5r
2 + k4r + 1) (14)

= ψ2(r)>S3ψ2(r) + (r̄ − r)ψ1(r)>T3ψ1(r),

where

S3 =

 s31 s32 s33

s32 s34 s35

s33 s35 s36

 � 0, T3 =

(
t31 t32

t32 t33

)
� 0.

Equation 14 gives us 5 constraints on 9 entries of S3 and T3. We chose to set free
variables s32, s34, s36, t32; System 15 shows the form of the remaining 5 variables.
Finally, we can combine these 6 PMI constraints, Problem 3 and the parameter-
ization of k from Equation 11 into a radial distortion calibration problem that
enforces a pincushion type distortion shape:
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12k2
6 = s36−t33

16k5k6 = 2s35−2t32+r̄t33

6k2
5+6k4k6 = 2s33+s34−t31+2r̄t32

6k4k5−6k6 = 2s32+r̄t31

2k2
4−2k5 = s31


⇒



s31 = 4t12−s12−2r̄t31+2(s11−t11+2r̄t12)2

s33 = − 1
2r̄

(6s13+2s32−6t13+r̄s34

−6r̄(2s12−2t12+r̄t13)2+2r̄2t32−

−6(s11−t11+2r̄t12)

(2s12−2t12+r̄t13+r̄s13−r̄t13))

s35 = t32− 2
r̄
s36+6r̄(s13−t13)2+

+8(s13−t13)(2s12−2t12+r̄t13)

t31 = − 2
r̄

(3s13+s32−3t13−

3(2s12−2t12+r̄t13)(s11−t11+2r̄t12))

t33 = s36−12(s13−t13)2

(15)

Problem 5 (Pincushion distorion calibration)

minimize γ

subject to F � 0, S1 � 0, T1 � 0, S2 � 0, T2 � 0, S3 � 0, T3 � 0.

Problem 5 is a PMI program in 11 variables γ, s11, s12, s13, t12, t13, s22, s32,
s34, s36, and t32. Since S3 and T3 are polynomial matrices of degree 2, Problem 5
has to be dealt with using the relaxation scheme from Section 3.3.

4.4 Zero-crossing problem of the rational model

Also the zero-crossing problem of the rational model L(r) = f(r)
g(r) can be dealt

with using the proposed shape optimization technique. A sufficient condition for
avoiding a common root of the polynomials f(r) and g(r) on the interval [0, r̄]
is to force at least one on them to have no root. Here, we decided on enforcing
the constraint

∀r ∈ 〈0, r̄〉 : g(r)− p ≥ 0, where p > 0. (16)

Since Theorem 1 guarantees only nonnegativity of a polynomial, we need a
strictly positive parameter p to enforce strict positivity of g(r). Even though
parameter p must be user supplied, the method is not overly sensitive to its
value; in our experiments, we set p = 0.1. By applying Theorem 1 to the above
constraint and the interval [0, r̄], we get

g(r)− p = 1− p+ k4r+ k5r
2 + k6r

3 = ψ1(r)>S1ψ1(r) + (r̄− r)ψ1(r)>T1ψ1(r),

where

S1 =

(
s11 s12

s12 s13

)
� 0, T1 =

(
t11 t12

t12 t13

)
� 0.
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This yields a parameterization of k as well as a constraint on t11:

1− p = r̄ t11

k4 = s11 − t11 + 2r̄t12

k5 = 2s12 − 2t12 + r̄t13

k6 = s13 − t13

⇒


k = (k1, k2, k3, s11 − t11 + 2r̄t12,

2s12 − 2t12 + r̄t13, s13 − t13)

t11 = 1−p
r̄

(17)
Again, by combining the two PMI constraints with Problem 3 and the parame-
terization of k from Equation 17, we get a radial distortion calibration problem
that eliminates the zero-crossing problem:

Problem 6 (Zero-crossing distortion calibration)

minimize γ

subject to F � 0, S1 � 0, T1 � 0.

Problem 6 is an LMI program in 9 variables γ, s11, s12, s13, t12, t13, k1, k2, k3.

4.5 Shape optimization in Camera Calibration Procedure

All of the calibration problems presented in this paper expect the projection co-
ordinates xi, yi, x̂i, and ŷi to be known, see Equation 1. This assumes a known
calibration target Xi ∈ R3 as well as known camera parameters R ∈ SO(3),
t ∈ R3, and the calibration matrix K ∈ R3×3. A straightforward idea how to fold
the shape optimized radial distortion calibration into the camera calibration
procedure is to first perform “classical” camera calibration [20, 21, 8, 18], includ-
ing radial distortion estimation. Once the projection coordinates are known, the
shape optimized radial distortion calibration can be performed to replace the
radial distortion parameters estimated by a classical method. One might argue
that the quality of such a solution could be compromised, since different error
functions may be considered by the camera and the shape optimization calibra-
tion methods. To mitigate this problem, we suggest an alternating approach to
“shape-optimize” the results of the classical camera calibration: first, the shape
optimization procedure is performed, followed by a bundle adjustment [19] step
where the radial distortion parameters are fixed. This can be repeated in a loop
for a fixed number of times, or until desired convergence is reached.

5 Experiments

To validate the proposed approach, this section presents several experimental
results on synthetic as well as real world datasets. We implemented Problems 4, 5,
and 6 in Matlab using Yalmip toolbox [11] with SeDuMi [15] as the underlying
SDP solver. Yalmip toolbox is a modeling language that can be used to solve LMI
as well as PMI programs, which it automatically translates into LMI relaxations
using the scheme presented in Section 3.3. All of the resulting SDP programs
were solved under a second on an Intel i7 3.50GHz based desktop computer
running Linux and 64bit Matlab.
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Fig. 2: Image noise experiment. Methods BA, SO, and ASO in red, green, and
blue, respectively, on calibration and validation data point sets. (a–b) barrel
distortion, (c–d) pincushion distortion (e–f) zero-crossing problem.

Synthetic experiment. In the synthetic experiment, we studied the per-
formance of the proposed method with respect to the image noise. We generated
a synthetic 16×16 planar calibration target. A scene consisted of 9 random
640×480 pixel cameras randomly positioned on a hemisphere around the tar-
get and rotated to face its center. The focal length was set to approx. 540 px
and the distances of the camera centers from the target were set up so that the
target (calibration data point set) covered only the middle part of the field of
view, approx 50%. For each of the three model-shape problem combinations, we
generated 100 scenes and corrupted the projections of the calibration target by
an increasing amount of Gaussian image noise in 5 levels, standard deviation
σ ∈ [0, 2] px in 1/2 px steps. We calibrated all scenes with OpenCV [2] made to
disregard the radial distortion component. We compare three methods: the first
method (BA) is the bundle adjustment method that included the respective ra-
dial distortion model performed together with the OpenCV calibration results,
the second method (SO) is the respective shape-optimization method performed
after the BA step, and the last method (ASO) is the alternating approach from
Section 4.5, fixed to 10 iterations.

Barrel distortion. First, we experimented with the barrel distortion and the
polynomial model L(r) = f(r). Figure 2(a) shows the mean of the reprojection
errors on the calibration data point set for methods BA, SO, and ASO using
Matlab function boxplot. The methods show identical performance, however
when a validation data set of points covering the whole field of view is used, see
Figure 2(a), we see both SO and ASO outperforming the classical BA approach.
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Fig. 3: Real experiment. Correction of the zero-crossing problem of the rational
model.

Pincushion distortion. Next, Figures 2(c–d) show the analogous measure for
the pincushion distortion and the division model L(r) = 1

g(x) . Here, both BA

and shape-optimization methods perform significantly better on the validation
data point set. Still, we can see superior performance of SO and ASO as the
noise increases.

Zero-crossing. Finally, we experimented with the rational model L(r) = f(r)
g(r)

and the mustache type distortion. Figure 2(d) shows identical performance on
the calibration dataset. On the other hand, we can see poor performance on the
validation data point set even if no noise is present, Figure 2(e). This is caused
by the fact that too few calibration points were on the outer parts of the field
of view where the convexity of the distortion function changes. Again, we see
better performance of SO and ASO methods.

Real experiment. In the real experiment, we calibrated a 2 MPix camera
from Point Grey’s Ladybug 3 system [1] using 12 images of a known 28×20 planar
target. Calibration using BA method and the rational model introduced quite
noticeable zero-crossing problem. As expected, calibration using ASO method
does not suffer from this type of problem. In this experiment, we set r̄ = 4 and
p = 0.1. Figure 3(a) shows the upper left corner of a rectified calibration image
using k provided by methods BA and ASO, respectively. Figure 3(b) shows the
shape of the BA calibration function in red and the ASO calibration in green.

6 Conclusion

The aim of this work was not to argue for a specific radial distortion model,
but to point out extrapolation problems inherent to all polynomial and rational
models. We solved these problems by enforcing a predetermined shape of the
distortion function. For most shapes and models, the proposed approach leads
to small semidefinite programming problems that can be solved fast and globally
optimally. We also showed how to deal with shapes and models that lead to PMI
problems using a LMI relaxation scheme. We showed experimentally that in
terms of the reprojection error on the known data points the proposed approach
provides radial distortion models that are equivalent to those provided by the
classical bundle adjustment approach, yet with the added value of having the
correct shape that mollifies or completely removes all extrapolation issues.
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